Partial regularity for weak solutions of nonlinear elliptic systems: the subquadratic case
نویسنده
چکیده
We consider weak solutions of second order nonlinear elliptic systems of divergence type under subquadratic growth conditions. Via the method of A-harmonic approximation we give a characterization of regular points up to the boundary which extends known results from the quadratic and superquadratic case. The proof yields directly the optimal higher regularity on the regular set.
منابع مشابه
Regularity versus singularity for weak solutions to elliptic systems in two dimensions
In two dimensions every weak solution to a nonlinear elliptic system div a(x, u,Du) = 0 has Hölder continuous first derivatives provided that standard continuity, ellipticity and growth assumptions hold with a growth exponent p ≥ 2. We give an example showing that this result cannot be extended to the subquadratic case, i.e. that weak solutions are not necessarily continuous if 1 < p < 2.
متن کاملOptimal Partial Regularity for Nonlinear Sub-elliptic Systems Related to Hörmander’s Vector Fields
This paper is concerned with partial regularity for weak solutions to nonlinear sub-elliptic systems related to Hörmander’s vector fields. The method of A-harmonic approximation introduced by Simon and developed by Duzaar and Grotowski is adapted to our context, and then a Caccioppoli-type inequality and partial regularity with optimal local Hölder exponent for gradients of weak solutions to th...
متن کاملPartial Hölder continuity for solutions of subquadratic elliptic systems in low dimensions
We consider weak solutions of second order nonlinear elliptic systems in divergence form under standard subquadratic growth conditions with boundary data of class C. In dimensions n ∈ {2, 3} we prove that u is locally Hölder continuous for every exponent λ ∈ (0, 1 − n−2 p ) outside a singular set of Hausdorff dimension less than n − p. This result holds up to the boundary both for non-degenerat...
متن کاملPartial interior regularity for sub-elliptic systems with Dini continuous coefficients in Carnot groups: the sub-quadratic controllable case
We consider nonlinear sub-elliptic systems with Dini continuous coefficients for the case 1 <m < 2 in Carnot groups and prove a C1-partial regularity result for weak solutions under the controllable growth conditions. Our method of proof for sub-elliptic systems is based on a generalization of the technique ofA-harmonic approximation. It is interesting to point out that our result is optimal in...
متن کاملExistence of at least three weak solutions for a quasilinear elliptic system
In this paper, applying two theorems of Ricceri and Bonanno, we will establish the existence of three weak solutions for a quasilinear elliptic system. Indeed, we will assign a differentiable nonlinear operator to a differential equation system such that the critical points of this operator are weak solutions of the system. In this paper, applying two theorems of R...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007